Two Component FIMP DM in a $U(1)_{B-L}$ Extension of the SM

Waleed Abdallah,^{1,2} Sandhya Choubey,³ and Sarif Khan⁴

¹Harish-Chandra Research Institute, HBNI, Chhatnag Road, Jhunsi, Allahabad 211019, India ²Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt

³Department of Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm,

Sweden

⁴Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen, D-37077 Germany

Abstract

In this work, we discuss two component fermionic FIMP dark matter (DM) in a popular B - L extension of the standard model (SM) with inverse seesaw mechanism. Due to the introduced \mathbb{Z}_2 discrete symmetry, a keV SM gauge singlet fermion is stable and can be a warm DM candidate. Also, this \mathbb{Z}_2 symmetry helps the lightest right-handed neutrino, with mass of order GeV, to be a long-lived or stable particle by choosing a corresponding Yukawa coupling to be very small. Firstly, in the absence of a GeV DM component (i.e., without tuning its corresponding Yukawa coupling), we consider only a keV DM as a single component DM produced by the freeze-in mechanism. Secondly, we study a two component FIMP DM scenario and emphasize that the correct ballpark DM relic density bound can be achieved for a wide parameter space.

Keywords: Beyond Standard Model, Neutrino Physics, Dark Matter, Cosmology of Theories Beyond the SM DOI: 10.31526/ACP.NDM-2020.19

1. INTRODUCTION

The standard model (SM) is a very successful theory in describing nature. But it can not explain a number of phenomena - two of the most important ones being the presence of dark matter (DM) and non-zero tiny neutrino mass. To address these two issues, we need to extend the SM particle content and/or its gauge group. The non-thermal DM production via the so-called freeze-in mechanism [1] provides a simple alternative to the standard thermal WIMP scenario. In the freeze-in mechanism, the DM is very feebly interacting with the cosmic soup, and as a result never attains thermal equilibrium in the early universe. Hence it is named Feebly Interacting Massive Particles (FIMPs). Due to their very feeble interactions, FIMPs easily escape the direct/indirect detection bounds while satisfying the measured value for the DM relic density (RD). In the present work based on [2], we explain the above two puzzles by extending the SM gauge group by a $U(1)_{B-L}$ gauge symmetry as a simple extension of the SM.

2. TEV SCALE B - L EXTENSION OF THE SM WITH INVERSE SEESAW (BLSMIS):

The B - L extension of the SM is based on the gauge group:

$$SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$$

In this model, nine additional SM singlet fermions (N_R^i and $S_{1,2}^i$, i = 1, 2, 3) are needed to explain the naturally small neutrino masses through the inverse seesaw mechanism [3, 4, 5]. In addition, an extra neutral gauge boson Z' associated to $U(1)_{B-L}$ and an extra SM singlet scalar, ϕ_H , are introduced. The full Lagrangian is given by

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + (D^{\mu}\phi_{H})^{\dagger} D_{\mu}\phi_{H} + \frac{i}{2} \bar{N}_{R} \gamma^{\mu} D_{\mu} N_{R}$$

+ $\frac{i}{2} \bar{S}_{1} \gamma^{\mu} D_{\mu} S_{1} + \frac{i}{2} \bar{S}_{2} \gamma^{\mu} D_{\mu} S_{2} - \mathcal{V}(\phi_{h}, \phi_{H})$
- $(Y_{\nu} \bar{L} \phi_{\bar{h}} N_{R} + Y_{S} \bar{N}_{R}^{c} \phi_{H} S_{2} + h.c.),$

where where $F'_{\mu\nu}$ is the $U(1)_{B-L}$ field strength, D_{μ} is the covariant derivative, $\tilde{\phi}_h = i\sigma_2\phi_h$ and $\mathcal{V}(\phi_h, \phi_H)$ is the potential (for more details, see [5]). After the B - L and electroweak symmetries breaking and the SM Higgs doublet ϕ_h and the SM singlet ϕ_H take their vacuum expectation values (vevs), v and v', respectively, the mass matrix of the neutrinos is given by

$$\mathcal{M}_{\nu} = \left(egin{array}{cccc} 0 & M_D & 0 & 0 \ M_D^T & 0 & M_N & 0 \ 0 & M_N^T & \mu_S & 0 \ 0 & 0 & 0 & \mu_S \end{array}
ight)$$

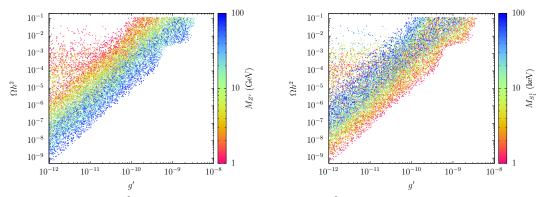


FIGURE 1: Allowed points in $(g', \Omega h^2)$ plane after imposing a constraint $\Omega h^2 \leq 0.12$, as an upper bound on the WDM RD, Ωh^2 .

where $M_D = \frac{1}{\sqrt{2}} Y_\nu v$ and $M_N = \frac{1}{\sqrt{2}} Y_S v'$. Due to the added \mathbb{Z}_2 symmetry, S_1 is completely decoupled and it only interacts with Z' with a coupling g'. Thus its mass is given as,

$$M_{S_1} = \mu_S \,. \tag{1}$$

Also, the light and heavy neutrino masses, respectively, are given by

$$M_{\nu_l} \simeq M_D M_N^{-1} \mu_S (M_N^T)^{-1} M_D^T, \ M_{\nu_{H\,H'}} \simeq M_N.$$
⁽²⁾

One can naturally obtain the light neutrino masses M_{ν_l} to be of order eV with μ_S of order keV and M_N of order TeV, keeping Yukawa coupling Y_{ν} of order one which leads to interesting signatures at the large hadron collider (LHC) [6]. Therefore, the lightest one, S_1^1 , will be a stable particle and hence a warm DM (WDM) candidate. Also, the lightest heavy right-handed (RH) neutrino ν_H^1 can be a DM (with mass of order GeV) by tuning its corresponding Yukawa coupling to be very small [7, 8].

3. WARM DM AS FIMP

As mentioned above, a WDM S_1^1 is produced by the freeze-in mechanism only from its coupling with Z'. Therefore, the corresponding gauge coupling g' is taken to be very feeble $\sim O(10^{-10})$ with the result that S_1^1 is never in thermal equilibrium with the cosmic soup. Due to small g', Z' also interacts very feebly with the cosmic soup and never achieves thermal equilibrium,

$$\frac{\Gamma_{Z'}}{H(T=M_{Z'})} < 1,\tag{3}$$

where $\Gamma_{Z'}$ is the total decay width of Z' and H is the Hubble parameter. The Boltzmann equation (BE) of Z' distribution function of is given by [9]

$$\hat{L}f_{Z'} = \sum_{i=1,2} \mathcal{C}^{h_i \to Z'Z'} + \mathcal{C}^{Z' \to \text{all}},\tag{4}$$

where $f_{Z'}$ is the Z' distribution function, $C^{h_i \to Z'Z'}$ is the collision term of Z' production from the decays of scalars $h_{1,2}$ and $C^{Z' \to all}$ is Z' decay collision term (for the expression of these collision terms, see [10, 11]). Once we get $f_{Z'}$, we then can determine its co-moving number density by using:

$$Y_{Z'} = \frac{45 g}{4\pi^4 g_s(M_{\rm sc}/z_0)} \int_0^\infty d\xi_p \,\xi_p^2 \,f_{Z'}(\xi_p, z)\,.$$
(5)

The keV DM S_1^1 can be produced from $f\bar{f} \to Z' \to S_1^1 S_1^1$ (annihilation contribution) and from $Z' \to S_1^1 S_1^1$ (decay contribution). To determine $Y_{S_1^1}$, we solve the following BE [10, 11, 12],

$$\frac{dY_{S_{1}^{1}}}{dz} = \frac{4\pi^{2}}{45} \frac{M_{\text{Pl}} M_{\text{sc}} \sqrt{g_{\star}}}{1.66 z^{2}} \sum_{f} \langle \sigma v_{f\bar{f} \to S_{1}^{1} S_{1}^{1}} \rangle \left[\left(Y_{f}^{\text{eq}} \right)^{2} - Y_{S_{1}^{1}}^{2} \right] \\
+ \frac{2 M_{\text{Pl}} z \sqrt{g_{\star}}}{1.66 M_{\text{sc}}^{2} g_{s}} \langle \Gamma_{Z' \to S_{1}^{1} S_{1}^{1}} \rangle_{\text{NTH}} \left(Y_{Z'} - Y_{S_{1}^{1}} \right).$$
(6)

The corresponding RD of the WDM S_1^1 is given by [11]

$$\Omega h^2 \simeq 2.755 \times 10^8 \left(M_{S_1^1} / \text{GeV} \right) Y_{S_1^1}(\infty) \,. \tag{7}$$

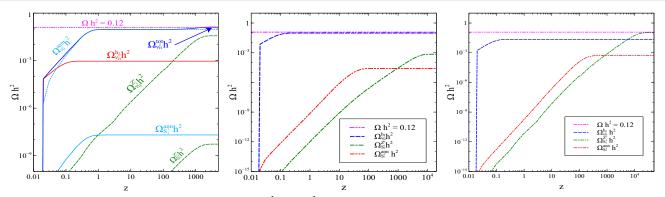


FIGURE 2: Variation of relative RD contributions of v_H^1 and S_1^1 as a function of *z*. Here, in left panel: $M_{Z'} = 1$ TeV, $M_{v_H^1} = 70$ GeV, $M_{S_1^1} = 10$ keV, $g' = 9.0 \times 10^{-12}$, $\alpha = 0.01$ rad, and $z_0 = 0.01$; in center (right) panel: $M_{Z'} = 10$ GeV (2.5 GeV), $M_{v_H^1} = 8$ GeV (2 GeV), $M_{S_1^1} = 10$ keV (100 keV), $g' \simeq 2.4 \times 10^{-11}$, $M_{h_2} = 5$ TeV, $\alpha = 0.01$ rad, and $z_0 = 0.01$.

From Fig. 1, it is clearly seen that Ωh^2 is inversely proportional to $M_{Z'}$ and directly proportional to $M_{S_1^1}$. More explicitly, for a fixed g' value, larger Ωh^2 values correspond to smaller $M_{Z'}$ values (red points) and larger $M_{S_1^1}$ values (blue points). Also, it is worth noting that many points (~ 84% of the scanned points) have a small DM RD ($\Omega h^2 \leq 10^{-2}$). Therefore, we discuss in the next section a two component FIMP DM possibility to get an extra RD contribution from the lightest heavy RH neutrino, $v_{H'}^1$ as a GeV scale DM.

4. TWO COMPONENT FIMP DM

As mentioned, the lightest heavy RH neutrino, v_H^1 , can be a stable particle by tuning its corresponding Yukawa coupling to be very small $\leq 3 \times 10^{-26} (\text{GeV}/M_N)^{1/2}$ [7, 8]. Therefore, it can be an extra DM component, with mass of order GeV. The dominant v_H^1 pair annihilation channels to SM particles are mediated by the neutral gauge boson Z' and the scalars $h_{1,2}$. The coupling of v_H^1 pair with Z' is g'/2, while with h_i is given by

$$\lambda_{\nu_{H}^{1}\nu_{H}^{1}h_{i}} = \sqrt{2} g' \frac{M_{\nu_{H}^{1}}}{M_{Z'}} O_{i}, \qquad (8)$$

where $O_1 = \sin \alpha$ and $O_2 = \cos \alpha$ (α is the scalar mixing angle). Therefore, v_H^1 pair annihilation is proportional to extremly feeble coupling g'. Due to this feeble g', v_H^1 will never reach thermal equilibrium and is produced by the freeze-in mechanism. The BE associated with v_H^1 production is as follows [10, 11, 12]

$$\frac{dY_{\nu_{H}^{1}}}{dz} = \frac{4\pi^{2}}{45} \frac{M_{\text{Pl}} M_{\text{sc}} \sqrt{g_{\star}}}{1.66 z^{2}} \sum_{f} \langle \sigma v_{f\bar{f} \rightarrow \nu_{H}^{1} \nu_{H}^{1}} \rangle \left[\left(Y_{f}^{\text{eq}} \right)^{2} - Y_{\nu_{H}^{1}}^{2} \right] \\
+ \frac{2 M_{\text{Pl}} z \sqrt{g_{\star}}}{1.66 M_{\text{sc}}^{2} g_{s}} \left[\langle \Gamma_{Z' \rightarrow \nu_{H}^{1} \nu_{H}^{1}} \rangle_{\text{NTH}} \left(Y_{Z'} - Y_{\nu_{H}^{1}} \right) \\
+ \sum_{i=1,2} \langle \Gamma_{h_{i}} \rangle \left(Y_{h_{i}}^{\text{eq}} - Y_{\nu_{H}^{1}} \right) \right].$$
(9)

Thermal average of the $h_{1,2}$ decay width is defined as [10]

$$\langle \Gamma_{h_i} \rangle = \frac{K_1(z)}{K_2(z)} \Gamma_{h_i} , \qquad (10)$$

where Γ_{h_i} is the total h_i decay width. The corresponding RD of ν_H^1 is given by [11]

$$\Omega_{\nu_{H}^{1}}h^{2} = 2.755 \times 10^{8} \left(M_{\nu_{H}^{1}} / \text{GeV} \right) Y_{\nu_{H}^{1}}(\infty) .$$
(11)

Finally, the total RD of this two component DM is given by

$$\Omega^{\text{tot}}h^2 = \Omega_{\nu_H^1}h^2 + \Omega_{S_1^1}h^2 \,. \tag{12}$$

It is clearly seen that the DM production depends crucially on the mass of the mother particles $(M_{Z'}, M_{h_2})$ and the DM mass. Assuming $M_{h_2} > 2M_{Z'} > 4M_{S_1^1}$, we divide the v_H^1 spectrum into two regions according to its dominant production modes:

- 1. Region I, where $M_{Z'} > 2M_{\nu_{II}^1}$ and ν_{H}^1 production is Z' dominated,
- 2. Region II, where $M_{Z'} < 2M_{\nu_{1}}$ and ν_{H}^{1} production is h_{2} dominated.

In region I, as shown in Fig. 2 (left), $\Omega_{\nu_H^1}^{Z'}h^2$ is larger than $\Omega_{\nu_H^1}^{h_2}h^2$ because the latter is suppressed by a factor of their partial decays ratio ($\simeq 12M_{\nu_H^1}^2M_{h_2}/M_{Z'}^3 \simeq \mathcal{O}(0.1)$). Also, $\Omega_{S_1^1}h^2$ is negligible compared to $\Omega_{\nu_H^1}h^2$ even though they have same gauge coupling g' and their mediator masses (M_{h_2} and $M_{Z'}$) are of the same order (\sim TeV). This is because the RD of a DM candidate is directly proportional to its mass. Therefore, the contribution of the keV mass S_1^1 to the DM total RD as compared to the GeV mass ν_H^1 is suppressed by a factor $\simeq M_{S_1^1}/M_{\nu_H^1} \simeq \mathcal{O}(10^{-7})$. In region II, as shown in Fig. 2 (center, right), Z' decays to ν_H^1 pair is kinematically forbidden, and ν_H^1 production consequently is h_2 dominated. Therefore, a major portion of the two DM candidates (ν_H^1 and S_1^1) is produced almost independently from the h_2 and Z' mediated processes, respectively. Moreover, in region I this possibility did not exist because both ν_H^1 and S_1^1 are produced dominantly via Z' and have the same number density.

5. CONCLUSION

We studied two problems beyond the SM, namely, the non-vanishing tiny neutrino masses and the existence of the DM within the BLSMIS. In the BLSMIS, S_1^1 can be a WDM, being odd under a \mathbb{Z}_2 symmetry. We studied S_1^1 as a FIMP WDM and found that a large portion of the parameter space gives a small contribution to the DM RD. Hence, as a possible scenario in the BLSMIS, we considered a two component FIMP DM to get an extra contribution to the DM RD. In this scenario, the lightest heavy RH neutrino, v_H^1 , can contribute independently to the DM RD as a GeV scale DM. For $M_{Z'} > 2M_{v_H^1}$, the production of v_H^1 through the Z' mediator has the dominant contribution to the total DM RD, while for $M_{Z'} < 2M_{v_H^1}$, h_2 mediated processes will contribute dominantly to v_H^1 production and the Z' mediated processes will contribute dominantly to S_1^1 production. In this region, we emphasized that both FIMP candidates, S_1^1 and v_H^1 , have relevant contributions to the total DM RD.

ACKNOWLEDGEMENTS

The authors would like to thank the Department of Atomic Energy Neutrino Project of Harish-Chandra Research Institute (HRI). We also acknowledge the HRI cluster computing facility (http://www.hri.res.in/cluster/). This project has received funding from the European Union's Horizon 2020 research and innovation programme InvisiblesPlus RISE under the Marie Sklodowska-Curie grant agreement No. 690575 and No. 674896.

References

- [1] L. J. Hall, K. Jedamzik, J. March-Russell and S. M. West, JHEP 1003, 080 (2010) [arXiv:0911.1120 [hep-ph]].
- [2] W. Abdallah, S. Choubey and S. Khan, JHEP 06, 095 (2019) [arXiv:1904.10015 [hep-ph]].
- [3] R. N. Mohapatra, Phys. Rev. Lett. 56, 561 (1986).
- [4] R. N. Mohapatra and J. W. F. Valle, Phys. Rev. D 34, 1642 (1986).
- [5] S. Khalil, Phys. Rev. D 82, 077702 (2010) [arXiv:1004.0013 [hep-ph]].
- [6] K. Huitu, S. Khalil, H. Okada and S. K. Rai, Phys. Rev. Lett. 101, 181802 (2008) [arXiv:0803.2799 [hep-ph]].
- [7] M. Re Fiorentin, V. Niro and N. Fornengo, JHEP 1611, 022 (2016) [arXiv:1606.04445 [hep-ph]].
- [8] P. Di Bari, P. O. Ludl and S. Palomares-Ruiz, JCAP 1611, no. 11, 044 (2016) [arXiv:1606.06238 [hep-ph]].
- [9] J. König, A. Merle and M. Totzauer, JCAP 1611, no. 11, 038 (2016) [arXiv:1609.01289 [hep-ph]].
- [10] P. Gondolo and G. Gelmini, Nucl. Phys. B 360, 145 (1991).
- [11] J. Edsjo and P. Gondolo, Phys. Rev. D 56, 1879 (1997) [hep-ph/9704361].
- [12] S. Iso, N. Okada and Y. Orikasa, Phys. Rev. D 83, 093011 (2011) [arXiv:1011.4769 [hep-ph]].